Mammalia, Chiroptera, Phylllostomidae, *Mimon crenulatum* (Geoffroy St.-Hilaire, 1803): First Record for the Cerrado Biome in the State of Mato Grosso, Brazil

Sérgio Lopes de Oliveira 1, Joaquim Manoel da Silva 2, Ricardo Firmino de Sousa 2, Karina de Cassia Faria 1,2

1 Universidade do Estado de Mato Grosso, Programa de Pós-Graduação em Ecologia e Conservação. BR 158, Km 148. CEP 78690-000. Nova Xavantina, MT, Brazil.

2 Universidade do Estado de Mato Grosso, Departamento de Ciências Biológicas. BR 158, Km 148. CEP 78690-000. Nova Xavantina, MT, Brazil.

* Corresponding author. E-mail: sergiolobiopes@gmail.com

ABSTRACT: Two male individuals of *Mimon crenulatum* were captured in the Mario Viana Municipal Park, at Nova Xavantina, eastern Mato Grosso, Brazil. This record expands the species’ distribution in West-Central Brazil, and represents the first record for the Cerrado of Mato Grosso. The specimens’ morphometric data are presented and compared with those of specimens found in other biomes. Two predictive geographic distribution models were generated, indicating the expansion of the potential distribution of the species.

The genus *Mimon* (Gray, 1847) includes four species, two of which are present in Brazil: *Mimon bennettii* (Gray, 1838) and *Mimon crenulatum* (Geoffroy St.-Hilaire, 1803) (Williams and Genoways 2008). *M. crenulatum* is considered a medium-sized bat when compared with species of the other taxa in the same family (Peracchi et al. 2010). This species feeds mainly on insects, specifically Coleoptera, but may also eat small vertebrates, pollen, and nectar, in lower quantities (Giannini and Kalko 2005; Nogueira et al. 2007; Peracchi et al. 2011).

Mimon crenulatum is a widely distributed species, occurring from Mexico to Bolivia, including Venezuela, Trinidad, Guianas, Ecuador, Peru and Brazil (Simmons 2005; Williams and Genoways 2008). In Brazil, *M. crenulatum* has been recorded from the states of Amapá (Martins et al. 2006: 2°11'36" S, 54°35'15" W; 1°36'5" S, 52°29'25" W, 1°17'1" S, 51°35'19" W), Amazonas (Reis and Shubart 1979; Reis and Peracchi 1987; Sampaio et al. 2003: 2°25'0'' S, 59°45'0' W; Bernard et al. 2011), Ceará (Gurgel Filho et al. 2009: 6°27'17" S, 40°38'46" W), Espírito Santo (Peracchi and Albuquerque 1993: 19°25'0" S, 40°30' W), Mato Grosso (Pine et al. 2010: 12°49'0" S, 51°49'0" W; Williams and Genoways 2008: 16°4'16" S, 52°21'35.4" W). Our captures also follow this pattern, since the specimens were collected near the Córrego do Bacaba, located in the municipal park. The specimens were fixed in formaldehyde (10%), preserved in alcohol (70%), and deposited in the scientific collection of the Universidade do Estado do Mato Grosso (UNEMAT), campus of Nova Xavantina, under numbers RM 165 and RM 166. Selected measurements of our specimens and others are presented in Table 1: forearm (FA), ear length (EarL), greatest length of skull (GLS), basal length (BL), condylobasal length (CBL), condylar canine length (CCL), zygomatic breadth (ZB), length of maxillary toothrow (LMaXT), length of maxillary toothrow (LMaMT), greatest of length mandible (GLM), and length of mandibular toothrow (LMaNT).

Precipitation in the month of the capture was 152 mm, and temperature varied between 22.1°C and 36.5°C (Nova Xavantina Weather Station). Captures were made using mist nets of 12 x 2.5 m, placed across possible flight paths at sunset and removed after six hours of sampling effort per night. The specimens captured were measured, weighed and identified according to the key proposed by Vizzoto and Taddei (1973), Lim and Engstrøn (2000) and Williams and Genoways (2008). Subsequently they were fixed in formaldehyde (10%), preserved in alcohol (70%), and deposited in the scientific collection of the Universidade do Estado do Mato Grosso (UNEMAT), campus of Nova Xavantina, under numbers RM 165 and RM 166. Selected measurements of our specimens and others are presented in Table 1: forearm (FA), ear length (EarL), greatest length of skull (GLS), basal length (BL), condylobasal length (CBL), condylar canine length (CCL), zygomatic breadth (ZB), length of maxillary toothrow (LMaXT), greatest of length mandible (GLM), and length of mandibular toothrow (LMaMT).

Although *Mimon crenulatum* has been reported in different habitats, it is most frequently found near water courses (Mello and Pol 2006). Our captures also follow this pattern, since the specimens were collected near the Córrego do Bacaba, located in the municipal park. The municipal park has been sampled before, but there has never been any record of *M. crenulatum*. This suggests that
the captures reported here took place at foraging rather than roosting areas, since the species’ activities may extend for up to one kilometer from the latter, as observed by Mello and Pol (2006).

The *Mimon crenulatum* specimens present typical characteristics of the taxon, such as dorsal stripe and nose leaf with pilose crenulated edges, as well as the dental formula described for the species (Nogueira et al. 2007; Williams and Genoways 2008). With regard to the morphometric pattern, the Mato Grosso Cerrado specimens’ follows between the range of measurements described from specimens from other biomes described in literature (Table 1). There are no measurement data available in literature concerning the only three individuals previously captured in Mato Grosso state (Pine et al. 1970; Williams and Genoways 2008; Silva and Marques 2010); therefore, it is not possible to make a comparison between specimens from different biomes inside the same state.

Although the species has already been captured in the state of Mato Grosso, the records are about 220 km and 460 km away from the record of this work, respectively in Amazonia (Pine et al. 1970) and Pantanal (Silva and Marques 2010). Inside the Cerrado, the four known records are in the state of Minas Gerais, the nearest being approximately 630 km away from our record (Stutz et al. 2004).

Two predictive distribution models using MaxEnt (Phillips et al. 2006) were generated, one with the 18 records previously described in the literature (model 1) and another with those 18 records together with our record.

Table 1. Select measurements of *Mimon crenulatum* from four biomes. Asterisks indicate studies for which average measurements were included. Present study1, Willig 19832, Gurgel Filho et al. 20093, Camargo and Fischer 20054, Mello and Pol 20065.

<table>
<thead>
<tr>
<th>Measurements (mm)</th>
<th>Cerrado5*</th>
<th>Caatinga2</th>
<th>Caatinga3</th>
<th>Pantanal4</th>
<th>Mata Atlântica5*</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA</td>
<td>46.1</td>
<td>45.87</td>
<td>45.1</td>
<td>48</td>
<td>52.2</td>
</tr>
<tr>
<td>EarL</td>
<td>24.9</td>
<td>26.25</td>
<td>21.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GLS</td>
<td>20.4</td>
<td>20.01</td>
<td>20.7</td>
<td>22.8</td>
<td>23.6</td>
</tr>
<tr>
<td>BL</td>
<td>16.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CbL</td>
<td>19.6</td>
<td>17.81</td>
<td>18.3</td>
<td>20.3</td>
<td>21.2</td>
</tr>
<tr>
<td>CCL</td>
<td>18.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZB</td>
<td>11.1</td>
<td>11.49</td>
<td>11.3</td>
<td>12.5</td>
<td>13.1</td>
</tr>
<tr>
<td>LmaxT</td>
<td>7.4</td>
<td>7.14</td>
<td>7.3</td>
<td>7.9</td>
<td>8.5</td>
</tr>
<tr>
<td>GLM</td>
<td>12.14</td>
<td>12.93</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LmanT</td>
<td>8.2</td>
<td>7.8</td>
<td>-</td>
<td>8.8</td>
<td>9.3</td>
</tr>
<tr>
<td>Weight (g)</td>
<td>8.8</td>
<td>11.5</td>
<td>-</td>
<td>15</td>
<td>18</td>
</tr>
</tbody>
</table>

Figure 1. Geographic distribution of *Mimon crenulatum* in Brazilian biomes. Model 1 represents *M. crenulatum* potential distribution based on previous records from literature. Model 2 represents the species potential distribution based on previous records combined with the new record for the Cerrado Biome. The color gradient represents the species presence probability: colors closer to blue indicate absence, and colors closer to red indicate presence. The points represent previous records and the star represents the new record for the Cerrado Biome in the state of Mato Grosso (14°43’10.8” S, 52°21’35.4” W).
Two bioclimatic variables explained 55% of the variation seen in each grid cell (Phillips et al. 2006). This methodology has proven useful for species with small numbers of occurrence records (Burneo et al. 2009; Tirira et al. 2011). The average AUC for model 1 was 0.780 (minimum = 0.720, maximum = 0.890; SD = 0.063) and for model 2 was 0.769 (minimum = 0.720, maximum = 0.890; SD = 0.063) and for model 2 was 0.769 (minimum = 0.720, maximum = 0.890; SD = 0.063).

Three bioclimatic variables explained 55% of the variation seen in each model: precipitation of driest quarter, mean temperature of wettest quarter and annual precipitation. The logistic output can be interpreted as an estimate of the probability of presence (ranging from 0 to 1), conditioned on the environmental variables in each grid cell (Phillips and Dudik 2008). Although *Mimon crenulatum* is not in the Brazilian list of endangered species (Chiarello et al. 2008), records of its occurrence are scarce. The small number of studies about bats in the Cerrado areas, especially in Mato Grosso, may contribute to such poor record. This record in the Mato Grosso Cerrado expands the distribution of *M. crenulatum* in west-central Brazil.

Figure 2. Male Mimon crenulatum (RM 165) captured in Nova Xavantina, eastern Mato Grosso, Brazil (Photo: Oliveira S, L.).

Acknowledgments: The authors wish to thank FAPEMAT (Fundaçao de Amparo à Pesquisa do Estado de Mato Grosso) for financial support. The specimens were collected under Permit No. 18276-1 issued by the IBAMA (Brazilian Institute of Environment and Renewable Natural Resources).

Literature Cited

Received: October 2012
Accepted: April 2013
Published online: June 2013
Editorial responsibility: Paúl M Velazco